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Abstract

In this article, we first derive a general intrinsic Barankin bound (IBB) for unknown parameters lying on Lie groups (LGs),
and its intrinsic McAulay-Seidman bound (IMSB) approximation. Second, the IMSB expression is used to revisit the intrinsic
Cramér-Rao bound (ICRB) on LGs. Indeed, an analytic expression of the ICRB, which is a special IMSB case, is obtained from
the latter. Finally, closed-form expressions for both IMSB and ICRB are obtained for Euclidean and LG observation models
depending on parameters lying in SO(3) and SE(3). The validity of the these IMSB and ICRB expressions, with respect to
the intrinsic mean square error, is shown via numerical simulations to support the discussion.
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1 Introduction

Performance bounds are of major interest in various sig-
nal processing areas. Indeed, these bounds allow to ob-
tain the minimum achievable estimation mean square
error for an estimator that is built from a given statis-
tical model. When the unknown parameters’ vector of
interest is subject to some mathematical properties, it
can be constrained to lie on a smooth manifold. In the
last decades, estimation of parameters lying on a man-
ifold raised much interest, especially in the image and
signal processing communities [1][2][3]. For instance, in
radar target tracking [4] or texture classification [5], it
is of interest to estimate unknown covariance matrices
belonging to the manifold of symmetric definite positive
(SPD) matrices. This interest can also be found in the
field of robotics and automatic control, especially to es-
timate a robot attitude on SO(3) [6], or directly its pose
on SE(3), for the problem of simultaneous localization
and mapping [7][8]. Also, in blind source separation, the
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demixing consists in estimating an orthonormal matrix
lying on the Stiefel manifold [9].

In order to assess the performance of an estimation prob-
lem on a manifold, it is crucial to design an intrinsic error
bound which takes into account its properties. To this
end, it is necessary to define an error metric preserving
the properties of the manifold under consideration. As
well as in the Euclidean case, the intrinsic error depends
on the estimation strategy and it is fundamental to assess
the ultimate achievable estimator performance, informa-
tion which is brought by the corresponding lower perfor-
mance bounds. Recently, different intrinsic Cramér-Rao
bounds (ICRBs) allowing to lower bound an intrinsic
mean square error (IMSE) on a manifold have been pro-
posed in the literature [10][11]. Particularly, closed-form
expressions of these theoretical inequalities for the man-
ifold of the SPD matrices have been developed in [12].

In the context of Lie groups (LGs), the ICRB has also
been treated in several works. For instance, in [13][14],
an inequality for the IMSE on LGs is proposed, and a
tractable approximated ICRB, only valid for the SO(3)
LG, is provided. In [15][16], a more generic ICRB is also
established but only valid for symmetric or isotropic
probability density functions (pdfs). Notice that all these
bounds have in common to assume that observations lie
in an Euclidean space. This is rather restrictive since
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estimation methods with LG observations exist in the
literature [17][18]. Consequently, their developments use
the Cauchy-Schwartz inequality and integral derivations
similar to the Euclidean case proof [19].

Nevertheless, it is known that the classical Euclidean
CRB can be derived from a different reasoning. Indeed,
the CRB belongs to a class of more generic bounds,
where the general Barankin bound (BB) [20][21][22] cor-
responds to the minimum MSE under uniform unbiased-
ness constraints [23, Sec. 2]. This bound is in general
intractable but, under some unbiasedness restricted as-
sumptions, it can be linked to the CRB as follows: 1)
First, the BB can be approximated by the McAulay-
Seidman bound (MSB). In this case, the infinite con-
straint is substituted by a finite linear matrix condition
[24] by leveraging on a set of test points lying on the pa-
rameters’ space, and 2) if restricted to two test points
including the unknown value, and tending the limits of
the difference between the two test points towards zero,
the MSB yields to the classical CRB form [25].

In this work, the main contribution is to adapt the (Eu-
clidean) Barankin’s framework for both parameters and
observations lying on LGs. By defining the mean square
error and bias on LGs in an intrinsic way, we can design a
generalization of the Barankin bound on LGs, so-called
intrinsic BB (IBB). From the latter, we develop a new
intrinsic McAulay-Seidman bound (IMSB), and a new
formalization of the ICRB which provides an exact an-
alytical formula valid for any pdf with observations on
LGs, contrary to the ICRBs proposed in [13][14]. Both
IMSB and ICRB admit closed-form expressions estab-
lished for the SO(3) and SE(3) LGs, which are derived
in this contribution for Euclidean observations. Notice
that the latter generalizes the results in [14] [15] [16]. In
addition, we take advantage of this formalism to obtain
a tractable expression of the ICRB for Gaussian models
with observation on LGs, and develop an integral ex-
pression of the IBB for the LG SE(3) .

The paper is organized as follows: the necessary back-
ground on LGs is reminded in Sec. 2. Sec. 3 formalizes
the IBB and IMSB, as well as the link with the ICRB,
and an integral form of the IBB in the case of SE(3)
is obtained. In Sec. 3.4, the closed-form expressions of
both IMSB and ICRB for Euclidean and LG observa-
tion models, with unknown parameters belonging to the
SE(3) LG, are derived. Finally, Sec. 5 validates the pro-
posed IMSB and ICRB by numerical simulations.

2 Background on Lie groups

2.1 Definition

A matrix LG G ⊂ Rn×n is a matrix space equipped with
a structure of smooth manifold and group.

Fig. 1. Relation between the space tangent to X ∈ G and
the space tangent to the neutral element I. The element a
belonging to g = TIG is transported to TXG thanks to the
left application defined by Xa.

• Its structure of smooth manifold means that it is pos-
sible to define the operations of integration and deriva-
tion. Particularly, we can specify the notion of tangent
space according to each element of G.

• Its structure of group involves the definition of an in-
ternal law acting between each element of G. It im-
plies that it exists a neutral element (identity matrix)
allowing the inversion of each element. On the other
hand, its internal law allows to link each element of the
neutral element tangent space to the tangent space of
any element, as illustrated in Fig. 1.

2.2 Lie algebra

The tangent space TIG is called Lie algebra and denoted
g. Its dimension as a space vector defines the intrinsic di-
mension of the LG. Each element of the LG close enough
to the neutral element can be associated to an element
of the Lie algebra through the logarithm and exponen-
tial applications defined, respectively, by ExpG : g → G
and LogG : G → g, as illustrated in Fig. 2. It is known
that g is isomorph to Rm. Thus, we can define two bi-
jections [.]∧ : Rm → g and [.]∨ : g → Rm. In this way,
we can denote the exponential and logarithm applica-
tions such as: ∀ a ∈ Rm, Exp∧

G (a) = ExpG ([a]∧G) and
∀ X ∈ G, [LogG (X)]

∨
G = Log∨G (X) .

2.3 Important LG examples

The two main LGs that will be considered in this work as
examples, after the theoretical contribution, are SO(3)
and SE(3).

2.3.1 Lie group SO(3)

• SO(3) is a group of the set of rotation matrices in
3D space. R ∈ SO(3) if and only if RR⊤ = I and
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Fig. 2. Relation between Rm, G and g

|R| = 1.

• Its Lie algebra correspond to the set of skew-
symmetric matrices. More precisely, so(3) = {[w]×|w ∈
R3} where [.]× denotes the operator which transforms
a vector to a skew-symmetric matrix.

• Consider R ∈ SO(3) such as R = Exp∧
SO(3) (w) . The

expression of its exponential operator Exp∧
SO(3) (.) is

given by the Rodrigues formula:

Exp∧
SO(3) (w) =

I3×3 +
[w]×
∥w∥

sin(∥w∥) +
[w]

2
×

∥w∥2
(1− cos(∥w∥)) . (1)

As Log∨SO(3) (R) = [w]×, R−R⊤ provides [26]:

∥w∥ = arccos
(

tr(R)− 1

2

)
(2)

Log∨SO(3) (R) =
∥w∥

[
R−R⊤]∨

2 sin (∥w∥)
. (3)

2.3.2 Lie group SE(3)

• SE(3) defines the semi-direct product group between
SO(3) and R3. From an application point of view, it
can be used to model the pose of a camera or a robot,

SE(3) =

{
M =

[
R p

0 1

]
|R ∈ SO(3),p ∈ R3

}
. (4)

• Its Lie algebra has the following structure:

se(3) =

{
A =

[
[w] u

0 0

]
|w ∈ R3,u ∈ R3

}
. (5)

• The exponential and logarithm operators can be built
from Log∨SO(3) (.) and Exp∧

SO(3) (.) . Indeed, if M ∈

SE(3):

M =

[
R x

0 1

]
= Exp∧

SE(3) (w) , w ∈ R6 (6)

with
w =

[
w⊤

R ,w
⊤
p

]
, (7)

wR and wp ∈ R3, then:

Log∨SE(3) (M) =

[
D(Log∨SO(3) (R) )−1 p

Log∨SO(3) (R)

]
, (8)

and for the exponential mapping:

Exp∧
SE(3) (w) =

[
Exp∧

SO(3) (wR) D(Log∨SO(3) (R) )wp

0 1

]
,

(9)

with D(.) = I3 +
1− cos(∥.∥)

∥.∥2
[.]× +

∥.∥ − sin(∥.∥)
∥.∥3

[.]
2
× .

(10)

In the sequel of this section, G denotes a matrix LG
and m is its intrinsic dimension.

2.4 Integration and derivation on Lie groups

2.4.1 Integration of a vector-valued function

As a LG is an orientable manifold, it is possible to define
a volume form so as to perform integration of a function
defined on a matrix LG [27]. Let f : G → Rm. Thereby,
the integral of f on G is defined by

I =

∫
G

f(X)λG(dX), (11)

where λG denotes a volume form called Haar measure. It
is a group measure respecting left-invariance properties.
Furthermore, as explained in [28], the integral I can be
reparametrized as the Riemannian integral on a neigh-
borhood of Rm as follows:

I = c

∫
Rm

f(Exp∧
G (ϵ) )|ϕG(−ϵ)|dϵ. (12)

where ϕG corresponds to the left Jacobian matrix of G
[29] and c is a real constant. d(.) defines the Lebesgue
measure on R6. In the case of the LG SE(3), this
Lebesgue integral is equivalent to a Riemman integral
on R6 [29, Eq. 12.11]. This property will be useful in the
following.
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2.4.2 Derivation of LG and vector-valued functions

The notion of classical directional derivative can be gen-
eralized on LGs. Let κ a LG-valued function on the LG
G′. The right Lie derivative 1 of κ in X ∈ G is:

LR
κ(X) =

∂Log∨G′

(
κ(X)−1 κ(XExp∧

G (δ)
)

∂δ

∣∣∣∣∣
δ=0

∀δ ∈ Rm.

(13)
In the case where κ has values in R or Rp then

Log∨G′ (.) = I and the derivative of κ can be defined as

LR
κ(X) =

∂κ(XExp∧
G (δ) )

∂δ

∣∣∣∣
δ=0

∀δ ∈ Rm. (14)

2.5 Estimation on Lie groups

Classically, an Euclidean estimator x̂ of the unknown pa-
rameter x ∈ Rp, built from the likelihood p(z|x), can be
characterized by three relevant statistical indicators 2 :
its intrinsic mean m

x̂
such as

∫
z∈Rm(x̂−m

x̂
)p(z|x)dz =

0, its bias
∫
z∈Rm(x − x̂)p(z|x) dz and its mean square

error (MSE)
∫
z∈Rm(x − x̂) (x − x̂)⊤ p(z|x)d z. Now,

consider a random observation Z, belonging to a LG
G′, depending of an unknown parameter X ∈ G, and
generated by the likelihood p(Z|X). An estimator of X
is a function X̂(Z) : G′ → G.
Intrinsically, the gap between X and X̂ can be assessed
by the error term ∥Log∨G

(
X−1X̂

)
∥. It should be

stressed out that this term defines a geodesic distance
only for some LGs, as any semi-simple LGs. Neverthe-
less, for the LGs SE(2) or SE(3), which are LGs of
interest in many applications, it is not built from a LG
metric. Even so, it specifies a good indicator of the in-
trinsic path traveled from X to X̂, and it is classically
used in the LG estimation literature [14][30].

1 It is also possible to define a left Lie derivative by switching
X and Exp∧

G (δ) .
2 Note that other indicators could be used (for instance the
median or the consistency).

Fig. 3. Illustration of the intrinsic gap between X and X̂,
which takes into account the curvature of the group.

For the sake of simplicity, we introduce the notation
lG(X,Y) = Log∨G

(
X−1 Y

)
∀X,Y ∈ G×G. Three in-

trinsic indicators can be extracted from the estimator
X̂ ≜ X̂(Z) :

• Its mean M
X̂

∈ G such that:∫
G′
lG

(
X̂,M

X̂

)
p(Z|X)λG(dZ) = 0 (15)

• its intrinsic bias bZ|X ∈ Rm given by [14]:

bZ|X(X, X̂) =

∫
G′
lG

(
X, X̂

)
p(Z|X)λG(dZ) (16)

≜ Ep(Z|X)

(
lG

(
X, X̂

))
(17)

• its intrinsic MSE (IMSE) CZ|X ∈ Rm×m defined by
[15]:

CZ|X(X, X̂) =∫
G′
lG

(
X, X̂

)
lG

(
X, X̂

)⊤
p(Z|X)λG(dZ) (18)

≜ Ep(Z|X)

(
lG

(
X, X̂

)
lG

(
X, X̂

)⊤)
(19)

3 Expressions of the intrinsicBarankin,McAulay-
Seidman and Cramér-Rao bounds

In this section, we introduce novel contributions by de-
veloping and formalizing the BB on LGs (i.e., IBB), and
its approximation so-called IMSB on LGs. Then, from
the latter, we obtain a new expression of the ICRB. As
the BB is classically formalized thanks to a uniform un-
biasedness condition, we define the IBB by leveraging on
the bias given in (17). Afterwards, we restrict the unbi-
asedness constraint to a set of test points intrinsically on
LG, involving the exponential application, what yields
to the desired IMSB and ICRB.
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3.1 Background on the Euclidean Barankin, McAulay-
Seidman and Cramér-Rao bounds

Assume a set of observations z = {z1, . . . , zN} ∈
(
Rd
)N

depending of x0 ∈ Rp, an unknown parameter vector,
and characterized by p(z|x0). Let g : Rp → Rs be a
smooth function. The BB on the estimator ĝ(x0) is given
by 3 :

PBB = min
ĝ(x0)

Ep(z|x0)

((
ĝ(x0)− g(x0)

) (
ĝ(x0)− g(x0)

)⊤)
w.r.t. Ep(z|x)

(
ĝ(x0)− g(x0)

)
= g(x)− g(x0)

∀x ∈ Rp (20)

The above uniform unbiasedness constraint can be seen
as a continuum of constraints, consequently, solving the
minimization problem (20) is hard. To overcome this is-
sue, PBB is generally approached by using a set of test
points, x(1:L) = {x(1), . . . ,x(L)}, verifying the unbiased-
ness condition in (20). Then, the latter can be written
as:

Ep(z|x0)

(
vx0

(x(1:L))
(
g(x0)− ĝ (x0)

)⊤)
(21)

=


(
g(x(1))− g(x0)

)⊤
...(

g(x(L))− g(x0)
)⊤
 (22)

with vx0
(x(1:L)) =

[
p(z|x(1))

p(z|x0)
, . . . ,

p(z|x(L))

p(z|x0)

]⊤
. This

new matrix condition allows to obtain [31, Lemma 1]

Ep(z|x0)

((
ĝ(x0)− g(x0)

) (
ĝ(x0)− g(x0)

)⊤)
⪰ ∆R−1

vx0
∆⊤, (23)

where ⪰ is defined such that ∀A,B, A ⪰ B means that
A−B is a positive definite matrix.
The right-hand term of the inequality is the MSB,

∆ =
[
g(x(1))− g(x0), . . . ,g(x

(L))− g(x0)
]
, (24)

Rvx0
= Ep(z|x0)

(
vx0

(x(1:L))vx0
(x(1:L))⊤

)
. (25)

3 If we consider two matrices A,B, A ≥ B means that
the matrix A − B is definite positive and tr(A − B) ≥ 0.
Consequently, find the minimum of a matrix A amounts to
find a matrix Amin such for any matrix B ̸= A, tr(A−B) ≥
tr(A−Amin) ≥ 0.

If the test points are written in the following form:

x(1) = x0 (26)
x(l) = x0 + ilδl ∀l ∈ {1, . . . , L− 1} (27)

with

il =

0, . . . , 1︸︷︷︸
lthcomponent

. . . , 0

⊤

∈ Rp, (28)

then one obtains the CRB expression when δl → 0 ∀l ∈
{1, . . . , L− 1} in the right-hand term of (23).

3.2 Development of the IBB and IMSB on LGs

Consider now a new set of observations Z belonging to
some matrix Lie group G′. Let be G (with dimension m)
and G′′ two others LGs. Z is connected to an unknown
parameter X0 ∈ G through its likelihood p(Z|X0). Con-
sider also a LG-valued function H : G → G′′, and we
seek an estimator of H(X0). By using the intrinsic bias
definition (17), an intrinsic uniform unbiasedness condi-
tion on the LG estimator Ĥ(X0) can be generalized,

bZ|X

(
H(X0), Ĥ(X0)

)
=lG′′ (H(X0),H(X))

∀ X ∈ G. (29)

Definition 3.2.1 (IBB on LG) The IBB can be de-
fined as the minimum value of the intrinsic MSE under
the intrinsic uniform unbiasedness constraint (29),

PIBB = min
Ĥ(X0)

CZ|X0
(H(X0), Ĥ(X0))

s.t. bZ|X

(
H(X0), Ĥ(X0)

)
= lG′′ (H(X0),H(X))

∀ X ∈ G (30)

Theorem 3.2.1 (IMSB on LG) Let us consider a set
of test points X(1:L) = {X(1), . . . ,X(l)} verifying (29).
Similar to the Euclidean MSB (23), the intrinsic MSE is
lower bounded by the so-called IMSB:

CZ|X0
(H(X0), Ĥ(X0)) ⪰ PIMSB (31)
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PIMSB = ∆G R−1
vX0

∆⊤
G (32)

∆G =[
lG′′

(
H(X0),H(X(1))

)
, . . . ,lG′′

(
H(X0),H(X(L))

)]
(33)

RvX0
=

Ep(Z|X0)

(
vX0

(
Z;X(1:L)

)
, vX0

(
Z;X(1:L)

)⊤)
, (34)

Proof :

The condition (28) applied to the test point provides the
following matrix constraint:

Ep(Z|X0)

(
vX0

(
Z;X(1:L)

)
lG′′

(
H(X0), Ĥ(X0)

)⊤)

=


lG′′

(
H(X0),H(X(1))

)⊤
...

lG′′
(
H(X0),H(X(L))

)⊤
 (35)

withvX0

(
Z;X(1:L)

)
=
[
vX0

(
Z;X(1)

)
, . . . , vX0

(
Z;X(L)

)]⊤
and vX0

(
Z;X(l)

)
=

p(Z|X(l))

p(Z|X0)
.

The quantities involved in the equation (34) are Eu-
clidean and the operator Ep(Z|X0) defines an Euclidean
scalar product. Consequently, the Lemma 1 of [31] can
be applied to find the formula (30).

3.3 Intrinsic Cramér-Rao bound

In this subsection, we derive the expression of the ICRB.
We propose to gather it by generalizing the Euclidean
formalism linking the MSB and CRB. It is obtained by
defining a set of test points which allows to get a new
constraint and a new formulation of the IMSB. Then,
the proposed ICRB is derived by letting the test points
increment tending towards zero.

Theorem 3.3.1 (ICRB on LG) Let us consider the
following set of test points:

X(1:L) = {X0,X0 Exp∧
G (i1 δ1) , . . . ,X0 Exp∧

G (iL−1 δL−1)}
(36)

where il ∀l ∈ {1, . . . , L − 1} is defined in (28). Conse-

quently,

vX0

(
Z;X(1:L), δ

)
=

[
1,

p(Z|X0 Exp∧
G (i1 δ1))

p(Z|X0)
, . . . ,

p(Z|X0 Exp∧
G (iL−1 δL−1)

p(Z|X0)

]⊤
with δ = [δ1, . . . , δL−1]

⊤

(37)
∆G =

[
0, lG′′

(
H(X0),H(X0 Exp∧

G (i1 δ1))
)
, . . . ,

lG′′
(
H(X0),H(X0 Exp∧

G (iL−1 δL−1)
)]

. (38)

When δl → 0, we obtain the following expression of the
ICRB:

PICRB =

LR
H(X0)

Ep(Z|X0)

(
s(Z,X0) s(Z,X0)

⊤)−1
(
LR
H(X0)

)⊤
.

(39)

with

s(Z,X0) =
∂log p(Z|X0 Exp∧

G (δ))

∂δ

∣∣∣∣
δ=0

. (40)

and

LR
H(X0)

=

[
∂lG′′

(
H(X0),H(X0 Exp∧

G (i1δ1))
)

∂δ1

. . . ,
∂lG′′

(
H(X0),H(X0 Exp∧

G (iL−1 δL−1))
)

∂δL

]
(41)

Proof :

First, let us define the matrix T such as:

T⊤ =



1 0 0 · · · 0

− 1

δ1

1

δ1
0 · · · 0

− 1

δ2
0

1

δ2
0

...
...

... 0
. . . 0

− 1

δL−1
0

. . . 0
1

δL−1


(42)

By multiplying to the left the condition (30) by the ma-
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trix T⊤, we obtain the new matrix constraint:

Ep(Z|X0)

(
ṽX0

(
Z;X(1:L)

)
lG′′

(
H(X0), Ĥ(X0)

)⊤)

=


lG′′

(
H(X0),H(X0 Exp∧

G (i1 δ1))
)

δ1
...

lG′′
(
H(X0),H(X0 Exp∧

G (iL−1 δL−1))
)

δL−1


(43)

with

ṽX0

(
Z;X(1:L), δ

)
=

[
p(Z|X0 Exp∧

G (i1 δ1))− p(Z|X0)

δ1 p(Z|X0)
,

. . . ,
p(Z|X0 Exp∧

G (iL−1 δL−1))− p(Z|X0)

δL−1 p(Z|X0)

]⊤
(44)

Thus, by again using [29, Lemma 1], we yield to a new
expression of the IMSB:

PIMSB = ∆̃G R̃ṽX0
∆̃

⊤
G (45)

with

∆̃G =

[
lG′′

(
H(X0),H(X0 Exp∧

G (i1 δ1)) ,
)

δ1

. . . ,
lG′′

(
H(X0),H(X0 Exp∧

G (iL−1 δL−1))
)

δL

]
(46)

R̃ṽX0
=

Ep(Z|X0)

(
ṽX0

(
Z;X(1:L), δ

)
ṽX0

(
Z;X(1:L), δ

)⊤)
(47)

Similarly to the Euclidean case, the ICRB can be ob-
tained with δl 7→0 ∀l ∈ {1, . . . L − 1} in the expression
of R̃ṽX0

and ∆̃G such as:

PICRB = lim
δ 7→0

∆̃G R̃−1
ṽX0

∆̃
⊤
G (48)

∆̃G and R̃ṽX0
are detailed in the sequel.

• Computation of limδ 7→0 R̃ṽX0

By defining ∀δ ∈ R, fZ,X0
(δ) = p(Z|X0 Exp∧

G′ (i δ)), and
by definition of the Euclidean derivative, one obtains

lim
δl 7→0

fZ,X0
(δl)−fZ,X0

(0)

δl
=
∂fZ,X0

(δl)

∂δl

∣∣∣∣
δl=0

∀l ∈ {1, . . . L− 1} (49)

and

lim
δl 7→0

fZ,X0
(δl)−fZ,X0

(0)

δlfZ,X0
(0)

=
∂ log fZ,X0

(δl)

∂δl

∣∣∣∣
δl=0

∀l ∈ {1, . . . L− 1} (50)

Consequently, by concatenating each derivative accord-
ing to each δl, we find that,

lim
δ 7→0

ṽX0

(
Z;X(1:L), δ

)
= s(Z,X0) (51)

with

s(Z,X0) =
∂log p(Z|X0 Exp∧

G (δ))

∂δ

∣∣∣∣
δ=0

. (52)

By assuming that ṽX0

(
Z;X(1:L)

)
is upper-bounded by

a continuous integrable function, then

δ 7→Ep(Z|X0)

(
ṽX0

(
Z;X(1:L), δ

)
ṽX0

(
Z;X(1:L), δ

)⊤)
is continuous and

lim
δ 7→0

Ep(Z|X0)

(
ṽX0

(
Z;X(1:L), δ

)
ṽX0

(
Z;X(1:L), δ

)⊤)
=Ep(Z|X0)

(
s(Z,X0) s(Z,X0)

⊤ ) . (53)

Finally, we have

lim
δ 7→0

R̃ṽX0
= Ep(Z|X0)

(
s(Z,X0) s(Z,X0)

⊤ ) . (54)

• Computation of limδ 7→0 ∆̃G

In a similar fashion as in the previous case, one has

lim
δi 7→0

lG′′
(
H(X0),H

(
X0 Exp∧

G (ii δi)
))

δi
=

∂ lG′′
(
H(X0),H

(
X0 Exp∧

G(ii δi)
))

∂δi

∣∣∣∣∣
δi=0

(55)

By definition, the last quantity corresponds to the ith

column of the right Lie derivative of H according to X0.
Consequently, it comes

lim
δ 7→0

∆̃G = LR
H(X0)

(56)

By substituting (54) and (56) in (48), we obtain the
desired formula.
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Remark 3.3.1 It should be stressed out that if the con-
sidered observation LG G′ is unimodular [15] [29] (which
is the case for instance for Rp, SO(3) and SE(3)), and
if the function δ → log(p(Z|XoExp∧

G (δ) ) is sufficiently
regular [19], then the expression (54) is:

Ep(Z|X0) (s(Z,X0) s(Z,X0)) =

− Ep(Z|X0)

(
∂2log p(Z|X0 Exp∧

G (δ1) Exp∧
G (δ2))

∂ δ1 ∂ δ2

∣∣∣∣
δ1,δ2=0

)
(57)

The advantage of this formula is that it allows to retrieve
closed-form expressions of the bound in an easier way.

3.4 Link with the state-of-the-art ICRB

When H = I and the set of observations is Euclidean,
we remark that expression (39) corresponds to the ap-
proached ICRB developed in [14], gathered by neglecting
the terms linked to the curvature of the group. Indeed,
the bound in [14] has the following form:

P̃ =Ep(Z|X0)

(
ψG

(
lG(X0, X̂0)

))
PICRB

Ep(Z|X0)

(
ψG

(
lG(X0, X̂0)

))⊤
. (58)

where ψG(.) is the inverse of the left Jacobian matrix
ϕG(.), and PICRB is defined by equation (39). When
X̂0 is assumed to be close to X0, ψG(.) can be approxi-
mated by the identity matrix, and we retrieve equation
(57). In our demonstration, (57) is established without
approximations: this proves that PICRB is also a lower
bound, as well as P̃, which additionally allows to break
free of the considered LG local geometry, because the
curvature terms linking to ψG(.) are not taken into ac-
count. It is worth noticing that the bound P̃ (58) is not
explicit. Indeed, the right-hand term of (58) depends it-
self of the IMSE through the term lG(X0, X̂0). Conse-
quently, its implementation is not trivial and requires
the approximation of the term ψG(.).

4 IMSB and ICRB analytical expressions

In the following, we develop analytical expressions of the
proposed IMSB and ICRB.

• First, we consider a model that leads to tractable
ICRB and IMSB. To succeed that, we assume a Gaus-
sian observation model that can be written from un-
known parameters belonging to SO(3) or SE(3). Par-
ticularly, we detail the computations leading to the
closed-form expression of the IMSB, then those of the

ICRB. In the case of SO(3), we observe that the ob-
tained ICRB is a generalization of the ICRB in [32].

• Then, we propose a more generic model on any matrix
LGs where only the ICRB is tractable. Observations
are on LGs and are assumed non-linear.

• We conclude this section by demonstrating an integral
expression of the IBB in the case of SE(3).

For the sake of simplicity and without loss of generality,
we consider that the unknown parameter is directly X0

so that H = I.

4.1 Expressions for SO(3) and SE(3) with linear Eu-
clidean observations

The proposed model has the following form,

zn = ΠX0 Π
′pn+nn nn ∼ NR3(0,Σ) ∀n ∈ {1, . . . N}

(59)
where {zn}Nn=1 and {pn}Nn=1 are sets of N 3D points.
X0 ∈ G is the unknown parameter modeling a geomet-
rical transformation between them, and belonging to ei-
ther SO(3) or SE(3). {nn}Nn=1 are assumed to be inde-
pendent among them.Π andΠ′ are two affine operators.
The full observation vector is z =

[
z⊤1 , . . . , z

⊤
N

]⊤.

• In the case of G = SO(3), the model is computed
with Π = Π′ =I3. This corresponds to the Wahba’s
problem [33].

• In the case of G = SE(3), the model is computed
with Π = [I3, 0] and Π′ is defined such as Π′ x =

[x, 1]
⊤ ∀x ∈ R3. It can be identified to the well-known

Perspective-n-Points problem in computer vision [34].
Classically, the observations correspond to pixel mea-
surements [35], but in order to simply the problem, we
do not consider the intrinsic transformation between
3D and pixel measurements.

Theorem 4.1.1 (IMSB for Euclidean observations)
The IMSB for the model (58) is given by the formula
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(32) with:

[
RvX0

]
i,j

= exp
(
0.5

(
m⊤

ij (IN ⊗Σ)mij − δi,j
))

,

(60)

mij = (IN ⊗Σ)
−1
(
IN ⊗ΠX(i) Π′

)
p+ (IN ⊗Σ)

−1(
IN ⊗ΠX(j)Π′

)
p− (IN ⊗Σ) (IN ⊗ΠX0Π

′) p,

(61)
δij =((
IN ⊗ΠX(i) Π′

)
p
)⊤

(IN ⊗Σ)
−1
((

IN ⊗ΠX(i) Π′
)
p
)
+((

IN ⊗ΠX(j) Π′
)
p
)⊤

(IN ⊗Σ)
−1
((

IN ⊗ΠX(j)Π′
)
p
)
−

((IN ⊗ΠX0 Π
′) p)

⊤
(IN ⊗Σ)

−1
((IN ⊗ΠX0 Π

′) p) .
(62)

Proof :

From (31), RvX0
is given by:

RvX0
= Ep(z|X0)

(
vX0

(
z;X(1:L)

)
vX0

(
z;X(1:L)

)⊤)
,

According to (59), and by independence of {nn}Nn=1, one
has

p(zn|X0) = N (ΠX0Π
′ pn,Σ) ∀n ∈ {1, . . . , N},

p(z|X0) = N (IN ⊗ΠX0Π
′ p, IN ⊗Σ),

with p =
[
p⊤
1 , . . . ,p

⊤
N

]⊤ and ⊗ the Kronecker product.
∀(i, j) ∈ {1, . . . L}2, we can show by usual manipulations
of Gaussian distributions that RvX0

verifies (61) [25, Eq.
B.2d]:

Remark 4.1.1 We remind that ∆G is written as:

∆G =
[
lG

(
X0,X

(1)
)
, . . . ,lG

(
X0,X

(L)
)]

. (63)

To compute it, we need to know the expression of
Log∨G (.) in the case of SO(3) and SE(3). They are
provided in Sec. 2.3.

Theorem 4.1.2 (ICRB for Euclidean observations )
The ICRB for the model (58) is given by:

PICRB =
(
J (1)

)−1

(64)

with:

J (1)
(s,q) =

N∑
n=1

p⊤
nΠ

′⊤ B(s,q) Π
′ pn

∀(s, q) ∈ {1, . . . ,m}2, (65)

and:

B(s,q) =
1

2

(
G⊤

s G
⊤
q A+G⊤

s AGq +G⊤
q AGs−

AGsGq) (66)
A =(ΠX0)

⊤Σ−1 (ΠX0) (67)

where {Gs}ms=1 corresponds to a basis of the Lie algebra
se(3) or so(3) and m is the intrinsic dimension of G.

Proof :

The ICRB for SO(3) and SE(3) can be obtained by
the formula (57). Thereby, its computation requires two
steps:
• to derive the logarithm of p(z|X0),
• to differentiate the gathered expression twice accord-

ing to δ1 and δ2.
(1) According to (59), and by independence of

{nn}Nn=1, we can write the log-likelihood of
z = {zn}Nn=1 as:

log p(z|X0) =

N∑
n=1

∥zn −ΠX0Π
′ pn∥2Σ. (68)

According to (57), the ICRB can be deduced by
computing the following quantity:

∂2log p(z|X0 Exp∧
G (δ1) Exp∧

G (δ2) )

∂δ1 ∂δ2

∣∣∣∣
δ1,δ2=0

=

∂2
N∑

n=1
∥zn −ΠX0 Exp∧

G (δ1)Exp∧
G (δ2) Π

′ pn∥2Σ

∂δ1 ∂δ2

∣∣∣∣∣∣∣∣
δ1,δ2=0

(69)

which leads to

∥zn −ΠX0 Exp∧
G (δ1) Exp∧

G (δ2) Π′ pn∥2Σ =

∥zn∥2Σ − 2 z⊤nΣ
−1ΠX0 Exp∧

G (δ1) Exp∧
G (δ2) Π′ pn

+ p⊤
nΠ

′⊤Exp∧
G (δ1)

⊤ Exp∧
G (δ2)

⊤ A

× Exp∧
G (δ1) Exp∧

G (δ2) Π′ pn, (70)

with A = (ΠX0)
⊤Σ−1 (ΠX0).
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(2) Then, by differentiating (70) successively with re-
spect to δ1 and δ2, and by taking their values to 0,
we can show (refer to App. B ) that the ICRB is
equal to (63).

4.1.1 Particular case of SO(3)

In the case of G = SO(3), and Σ = σ2 I3, we have

A =
1

σ2
X⊤ X =

1

σ2
I. We show that,

B(s,q) =
1

σ2
G⊤

s Gq ∀(s, q) ∈ {1, . . . , 3}2. (71)

Consequently, the matrix J (1) reads,

J (1)
(s,q) =

1

σ2

N∑
n=1

p⊤
n G⊤

s Gq pn ∀(s, q) ∈ {1, . . . , 3}2.

(72)

As {Gs}3s=1 is a basis of the set of skew-symmetric ma-
trix, then,

J (1) =
1

σ2

N∑
n=1

[pn]
⊤
× [pn]× . (73)

The inverse of the last expression corresponds to the
closed-form ICRB on SO(3) in [32, Prop. 2].

4.2 Expression of the ICRB for non-linear observations
on LGs

Now, we assume a set of independent observations
{Z1, . . .ZN} belonging to some LG G′ and following a
concentrated Gaussian distribution [36]:

Zi = F(X0)Exp∧
G′ (ni) ni ∼ N (0,Σ) ∀i ∈ {1, . . . , N}

(74)
whereF : G → G′ is a potentially non-linear and smooth
function.

Theorem 4.2.1 (ICRB for LG observations) The
ICRB for the model (74) is given by:

PICRB =
(
J (2)

)−1

(75)

with

J (2) =
N∑
i=1

(
LR
F(X0)

)⊤
×

E
(
ψG′(lG′(F(X0),Zi))

⊤Σ−1ψG′(lG′(F(X0),Zi))
)

LR
F(X0)

(76)

Proof :

We remind that the intrinsic Fisher information matrix
has the following generic expression:

J (2) = −E

(
∂2log p

(
Z|X0 Exp∧

G (δ1) Exp∧
G (δ2)

)
∂δ1∂δ2

)∣∣∣∣∣
δ1,δ2=0

(77)
First, we can write that the log-likelihood:

log p
(
Z|X0 Exp∧

G (δ1) Exp∧
G (δ2)

)
=

∈R︷︸︸︷
K −

1

2

N∑
i=1

∥∥lG′(F(X0 Exp∧
G (δ1) Exp∧

G (δ2) ,Zi)
∥∥2
Σ

∀δ1, δ2 ∈ (Rp)2 (78)

δ1 and δ2 are assumed sufficiently small so that:

Exp∧
G (δ1) Exp∧

G (δ2) = Exp∧
G (δ1 + δ2) (79)

Thus

log p
(
Z|X0 Exp∧

G (δ1) Exp∧
G (δ2)

)
=

∈R︷︸︸︷
K −

1

2

N∑
i=1

∥∥lG′(F(X0 Exp∧
G (δ1 + δ2) ,Zi)

∥∥2
Σ
.) (80)

Now, let us consider a first order Taylor-Young expan-
sion on LG of the function X → lG′(F(X), .) [29]

lG′(F(X0 Exp∧
G (δ) ), .) =

lG′(F(X0), .) +
∂lG′(F(X0 Exp∧

G (ϵ) , .)

∂ϵ

⊤
∣∣∣∣∣
ϵ=0

δ +O(∥δ∥2)

(81)

According to the Baker-Campbell-Hausdorff formula
[37], we know that:

∂ lG′(F(X0 Exp∧
G (ϵ) ,Zi))

∂ϵ

∣∣∣∣
ϵ=0

= ψG′(lG′(F(X0),Zi))

(82)
Consequently, by composition of LG derivatives of ϵ→
lG′(F(X0 Exp∧

G (ϵ) , ) and ϵ → F(X0 Exp∧
G (ϵ) ) , we

have:

∂ lG′(F(X0 Exp∧
G (ϵ) ),Zi)

∂ϵ

∣∣∣∣
ϵ=0

= ψG′(lG′(F(X0),Zi))LR
F(X0)

(83)

By injecting the latter in (81), one obtains:

lG′(F(X0 Exp∧
G (δ) ) = lG′(F(X0))+(

LR
F(X0)

)⊤
ψG′(lG′(F(X0),Zi))

⊤δ +O(∥δ∥2) (84)
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Thus, as ∥δ1+δ2∥ → 0, the equation (79) can be written
as:

log p
(
Z|X0 Exp∧

G (δ1) Exp∧
G (δ2)

)
=

∈R︷︸︸︷
K −

1

2

N∑
i=1

∥∥lG′(F(X0 Exp∧
G (δ1 + δ2) ,Zi)

∥∥2
Σ

=

∈R︷︸︸︷
K −

1

2

N∑
i=1

∥∥∥∥lG′(F(X0)) +
(
LR
F(X0)

)⊤
×

ψG′(lG′(F(X0),Zi))
⊤ (δ1 + δ2) +O(∥δ1 + δ2∥2)

∥∥2
Σ

(85)

By developing the previous expression, differentiating
according to δ1 and δ2 and taking it value to 0, we
gather:

∂2log p
(
Z|X0 Exp∧

G (δ1) Exp∧
G (δ2)

)
∂δ1∂δ2

∣∣∣∣∣
δ1=δ2=0

=

−
N∑
i=1

(
LR
F(X0)

)⊤
ψG′(lG′(F(X0),Zi)

⊤Σ−1

ψG′(lG′(F(X0),Zi))LR
F(X0)

(86)

By taking the mean value, we obtain the following ex-
pression of J (2) in (76).

Remark 4.2.1 The last expression can be interpreted
as a generalization of the Slepian-Bangs formula, which
a well-known formula for the Fisher information matrix
in the Euclidean case under Gaussian Euclidean observa-
tions [38] [39]. Especially, when G and G

′
are Euclidean

space, ψG′(.) = I, Log∨G′ (.) =

[
0 .

0 0

]
, Exp∧

G (.) =[
I .

0 0

]
, then the model (73) becomes Gaussian Euclidean

and we retrieve the Euclidean formula.

4.3 Integral form of the IBB on SE(3)

In the Euclidean case, an integral form of the BB has
been proposed in [40]. It can be relevant and useful es-
pecially when the MSB is not tractable. Indeed, if this
integral form could be developed with a closed-form, the
BB could be implemented numerically. This form can be
obtained by leveraging on the MSB expression. Indeed,
by considering linear transformations on the unbiased-
ness constraint at test-points, one can obtain a lower
bound which the limit when the number of transforma-
tions and points tends to infinity provides an integral
form of the BB (not released in [17]) [40].

In this part, we propose to transpose this result for the
LG SE(3). In the Euclidean case, the reasoning is han-
dled by using the property that an Euclidean integral
can be approached by a sum on several sub-intervals of
the definition set. This result is in general not available
for parameters lying on LGs. Nevertheless, thanks to the
structure of SE(3), we can deal with Euclidean parame-
ters in order to determine the IBB of this specific group
and carry out an equivalent reasoning.

Let us consider a parametrization of each test points
under the form X(l) = Exp∧

SE(3) (ϵl) (ϵl ∈ R6). A linear
transformation constraint on the unbiasedness condition
(43) can be derived on SE(3):

Ep(Z|X0)

(
h⊤vX0

(
Z; {Exp∧

SE(3) (ϵl) }
)
lSE(3)(X0, X̂0)

⊤
)

=h⊤


lSE(3)

(
X0,Exp∧

SE(3) (ϵ1)
)⊤

...

lSE(3)

(
X0,Exp∧

SE(3) (ϵL)
)⊤
 , (87)

where the transformation h ∈ RL is defined as:

hk =
[
h1|ϕSE(3)(−δ1)|, . . . , hL|ϕSE(3)(−ϵL)|

]⊤
∀k ∈ {1, . . . ,K}. (88)

If we define a parametric function h on the set S×SE(3),

where S =

{
Υ ∈ SE(3)|Υ =

[
I τ

0 1

]}
, such as hl =

h(Υ,Exp∧
SE(3) (ϵl) ),∀l ∈ {1, . . . , L− 1}. If K transfor-

mations are considered, then h can be indexed by k:

hk =
[
h(Υk,Exp∧

SE(3) (ϵl) ) |ϕSE(3)(−δ1)|, . . . ,

h(Υk,Exp∧
SE(3) (ϵL) ) |ϕSE(3)(−ϵL)|

]
. (89)

4.3.1 Limit of the IMSB when L → ∞

When the number of points {ϵl}Ll=1 tends to infinity,
the sums iterating on ϵl in the scalar products of the
constraint (87) converge to Riemannian integrals on R6:

Ep(Z|X0)

(
q(Υ,Z) lSE(3)

(
X0, X̂0

)⊤)
= Γ(Υ) (90)

11



with

q(Υ,Z) =

∫
R6

h(Υ,Exp∧
SE(3) (ϵ) )|ϕSE(3)(−ϵ)| ×

vX0(Z;Exp∧
SE(3) (ϵ) ) dϵ (91)

Γ(Υ) =

∫
R6

h(Υ,Exp∧
SE(3) (ϵ) )|ϕSE(3)(−ϵ)| ×

c(Exp∧
SE(3) (ϵ) ) dϵ (92)

c(.) = lSE(3) (X0, .)
⊤ (93)

Consequently, the constraint (31) applied on each Υk

can be used so as to obtain a new inequality:

Ep(Z|X0)

(
lSE(3)

(
X0, X̂0

)(
lSE(3)(X0, X̂0

)⊤)
⪰ Γ⊤ R−1

sK Γ, (94)

with 
Γ = [Γ(Υ1), . . . ,Γ(ΥK)]

⊤ (95)
RsK = Ep(Z|X0)

(
q(Z)q(Z)⊤

)
(96)

q(Z) = [q(Υ1,Z), . . . , q(ΥK ,Z)]
⊤ (97)

The right-hand term identifies itself as the IMSB ob-
tained with L → ∞.

4.3.2 Limit of the IMSB when K → ∞

According to the equation (2) [41], the IMSB (30) is
achieved if R−1

sK Γ = ΛB with:

Λ =

diag
[
|ϕSE(3)(−τ̃ 1)|lS(Υ1,Υ2)

⊤; . . . ,

|ϕSE(3)(−τ̃K)| lS(ΥK ,ΥK+1)
⊤
]
∈ RK×6K , (98)

and B ∈ R6K×6. τ̃ k is defined so that Υk =
Exp∧

SE(3) (τ̃ k) ∀k ∈ {1, . . . ,K}. It ensues that the ith

column of Γ⊤ R−1
sK Γ is,

[
Γ⊤ R−1

sK Γ
]
i
=

K∑
k=1

Γ(Υk)
⊤ b⊤

i |ϕSE(3)(−τ̃ k)| lS(Υk,Υk+1)

(99)
where bi is the ith column of B.

According to the structure of S, we know that,

lS (Υk,Υk+1) =

[
03×1

τK+1 − τK

]
, (100)

and the previous equation can be developed as,[
Γ⊤ R−1

sK Γ
]
i
=

K∑
k=1

Γ(Exp∧
SE(3) (τ̃ k) )

⊤ |ϕSE(3)(−τ̃ k)|b̃⊤
k,i (τ k+1 − τ k) ,

(101)

where b̃k,i = Πk bi and Πk = [03×6 k−3, I3 03×6K−6 k].
If the difference τ k+1 − τ k is assumed to be constant
equal to α e ( with e = 16×1) then the sum (101) is a
series converging to a Riemannian integral on R6:

lim
K→∞

[
Γ⊤ RsK

−1 Γ
]
i
=

α

∫
R6

Γ(Exp∧
SE(3) (τ̃ ) )

⊤ b̃i(Exp∧
SE(3) (τ̃ ) )

⊤

× |ϕSE(3)(−τ̃ )| e dτ . (102)

According to (12),

lim
K→∞

[
Γ⊤ R−1

sK Γ
]
i
=

α

∫
SE(3)

Γ(Υ)⊤ b̃⊤
i (Υ) eλSE(3)(dΥ). (103)

By using (11) and (92), one obtains:

lim
K→∞

[
Γ⊤ R−1

sK Γ
]
i
=

α

∫
SE(3)

∫
SE(3)

h(Υ,X) c(X)⊤b̃⊤
i (Υ)

eλSE(3)(dΥ)λSE(3)(dX). (104)

Consider, as in [40], that HK = [h1, . . . ,hK ] tends to
I when L → ∞. In the Euclidean case, it means the
function h(·) corresponds to the Dirac distribution. This
distribution can be generalized for parameters lying on
SE(3) under the following form [15],

h(Υ,X) = δ (Υ,X) ≜
6∏

i=1

δ
([
lSE(3)(Υ,X)

]
i

)
(105)

where δ is the Dirac distribution on R. Consequently,

lim
K→∞

[
Γ⊤R−1

sKΓ
]
i
= α

∫
SE(3)

c(X)⊤b̃i(X)⊤eλSE(3)(dX).

(106)

5 Validation

In this section, we propose to numerically validate the
proposed intrinsic bounds in the case of Gaussian obser-
vation model (59) for both SO(3) and SE(3) LGs. The
bounds are compared to the corresponding IMSE.
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5.1 Implementation details

5.1.1 Implementation of the intrinsic bounds

• N = 3 3D points are assumed with p1 = [1, 2, 2]⊤,
p2 = [3, 4, 5]⊤ and p3 = [0.1, 0.2, 2]⊤.

• Σ is assumed equal to σ2 I3.
• To compute the ICRB, the only quantities we need are

the generators {Gs}ps=1 for SO(3) and SE(3). They
are provided in App. A.

• Concerning the IMSB, we have to define the test
points. We assume that ∀l ∈ {1, . . . , L − 1}, every
test point X(l) is written as:

X(l) = X0 Exp∧
G (δl) (107)

where δl is a zero-mean Gaussian vector with co-
variance matrix σ2

l I. This generative model allows to
browse the whole group, especially when σl is suffi-
ciently high.

5.1.2 Implementation of the IMSE

The IMSE expression is given by the trace of equation
(19). As the latter is not tractable, it can be approxi-
mated by Monte-Carlo simulations:

1

Nmc

Nmc∑
t=1

∥∥∥lG(X0,
(
X̂0

)
t
)∥2 (108)

where Nmc is the number of realizations and
(
X̂0

)
t
the

tth realization of the estimator. The estimator
(
X̂0

)
t

is computed by searching the likelihood maximum of
p(z|X0). It amounts to find the minima of the criterion
N∑

n=1
∥zn − ΠX0Π

′ pn∥2Σ. To obtain a sufficiently accu-

rate estimator, a Gauss-Newton algorithm on LGs is
used [42]. As the criterion is potentially not convex, it is
not sure that the algorithm converges to a global min-
imum. Nevertheless, convergence properties have been
verified numerically in several works [43][44][45].

5.2 Case of SO(3)

We first simulate the proposed bounds with the model
applied to SO(3). We assume an unknown rotation ma-
trix X0 = Exp∧

SO(3) ([0.1, 0.1, 0.1]) . In Fig. 5.2, we first
observe the consistency of the proposed bounds. Indeed,
as well as the IMSE, they have values increasing what-
ever the value of σ2, and both are lower bounds on such
value. Secondly, we remark that for low σ2 values, the
IMSB and ICRB have a weak gap and are close to the
IMSE. The greater is the value of σ2, the closer the two
bounds becomes. Thus, for a model on SO(3), the IMSB
and the ICRB results are similar.
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0
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1

Fig. 4. Evolution of the ICRB and IMSB superimposing to
the IMSE for SO(3).

5.3 Case of SE(3)

Now we are interested in the model on SE(3). We assume
X0 = Exp∧

SE(3) ([0.1, 0.1, 0.1, 1, 1, 1]) . Fig. 5 shows the
IMSB, ICRB and the corresponding IMSE for different
values of the noise observation model variance.

0 0.5 1 1.5 2 2.5 3 3.5 4
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10

15

20

25

30

35

Fig. 5. Evolution of the ICRB and IMSB superimposing to
the IMSE for SE(3)

As previously seen for the SO(3) case, we observe that
the computations of the bounds are coherent. Indeed,
both bounds stay inferior to the IMSE independently
of the σ2 value, that is, they are lower bounding the
IMSE. Moreover, we remark that for small values of σ2,
both IMSB and ICRB are almost equivalent. In contrast
to the SO(3) case, when σ2 becomes large, they tend
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to drift apart. Particularly, the IMSB becomes tighter
and getting closer to the IMSE. Concerning the ICRB,
we observe that it tends to overestimate the theoreti-
cal performance of the model for high noise variances.
Consequently, for the model on SE(3) with large noise,
the IMSB is the preferred option as it provides a tighter
bound.

In order to analyze more precisely the relation between
both bounds, we have also studied the influence of the
test point increment δl. Fig. 5.3 shows the ICRB and
IMSB for different values of the increment test point
standard deviation. We observe that a high value of
σl(≃ 10−1 ) provides two bounds with an important gap.
This observation confirms the methodology because the
ICRB is built by tending σl to zero.
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Fig. 6. Evolution of the ICRB and IMSB for different values
of increment δl with σ2 = 1.

6 Conclusions

In this article, we developed a new IMSB on LGs and
provided a new formalization of the ICRB. The starting
point was to adapt to the LG case the existing Euclidean
formalism where the bounds of interest can be derived
from the general BB. The three IBB, IMSB and ICRB
expressions were obtained by using LG tools. Especially,
we obtained an ICRB similar to the one proposed in
[14], but the ICRB in this article generalizes existing re-
sults in the literature. Closed-form expressions of these
two bounds were obtained for a Gaussian observation
model and parameters on SO(3) and SE(3). These ex-
pressions were validated through numerical simulations,
as expected it was found that the IMSB may be a tighter
bound for some problems. A future work is to extend
the proposed bounds to the case where unknown pa-
rameters belong jointly to a LG and a discrete param-
eter space. This specificity is particularly encountered

in multi-antenna carrier phase-based precise positioning
systems, where both the receiver attitude and a set of
integer ambiguities must be estimated.
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A Expressions of SO(3) and SE(3) generators

A.1 Case of SO(3)

The generators are skew-symmetric elementary matrix
such as ∀w ∈ R3:

[w]× =

3∑
i=1

wiGi (A.1)

Thereby:

G1 =


0 0 0

0 0 −1

0 1 0

 ,G2 =


0 0 1

0 0 0

−1 0 0

 ,G3 =


0 −1 0

1 0 0

0 0 0


(A.2)

A.2 Case of SE(3)

Let the vector w ∈ R6 which can be divided [v,u]. The
generators of SE(3) are defined as a basis of the Lie
algebra such as: [

[v]× u

0 0

]
=

6∑
i=1

wiGi (A.3)
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Then, we gather:

G1 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 ,G2 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 ,G3 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


(A.4)

G4 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , G5 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , G6 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0


(A.5)

B Demonstration of equation (65)

Let us consider the term:

c(i)(δ1, δ2) = −z⊤nΣ
−1ΠX0 Exp∧

G (δ1) Exp∧
G (δ2) Π′ pn

+
1

2
p⊤
nΠ

′⊤Exp∧
G (δ2)

⊤ Exp∧
G (δ1)

⊤ A

× Exp∧
G (δ1) Exp∧

G (δ2) Π′ pn (B.1)

As this therm is equal to the Hessian of log p(z|X0), we
have by definition :

PICRB =

Ep(z|X0)

(
−

N∑
i=1

∂2c(i)(δ1, δ2)

∂δ1 ∂δ2

)∣∣∣∣∣
δ1=0,δ2=0

−1

(B.2)
By linearity of the expectation operator, the ICRB is
also written:

PICRB =

 N∑
i=1

Ep(z|X0)

(
−∂2c(i)(δ1, δ2)

∂δ1 ∂δ2

)∣∣∣∣∣
δ1=0,δ2=0

−1

(B.3)
What’s more, we can decompose c(i) such as:

c(i)(δ1, δ2) = e(i)(δ1, δ2) + f (i)(δ1, δ2) (B.4)

with:

e(i)(δ1, δ2) = −z⊤nΣ
−1ΠX0 Exp∧

G (δ1) Exp∧
G (δ2) Π′ pn

(B.5)

f (i)(δ1, δ2) =
1

2
p⊤
nΠ

′⊤Exp∧
G (δ1)

⊤ Exp∧
G (δ2)

⊤ A×

Exp∧
G (δ1) Exp∧

G (δ2) Π′ pn (B.6)

Thus, we get:

PICRB =


N∑
i=1

E(i) +

N∑
i=1

F(i)

︸ ︷︷ ︸
J


−1

(B.7)

with:

E(i) = Ep(z|X0)

(
−∂2e(i)(δ1, δ2)

∂δ1 ∂δ2

)
(B.8)

F(i) = Ep(z|X0)

(
−∂2f (i)(δ1, δ2)

∂δ1 ∂δ2

)
(B.9)

Consequently, the ICRB can be gathered by computing
E(i) and F(i).

B.1 Computation of E(i):

∂e(i)(δ1, δ2)

∂δ1 ∂δ1
= −z⊤nΣ

−1ΠX0
∂Exp∧

G (δ1)

∂δ1

∣∣∣∣
δ1=0

∂Exp∧
G (δ2)

∂δ2

∣∣∣∣
δ2=0

Π′ pn (B.10)

First, let us note that

∂Exp∧
G (δ)

∂δl

∣∣∣∣
δ=0

= Gl

where δl is the component l of δ. Consequently, we have:

∂e(i)(δ1, δ2)

∂ (δ1)k (δ2)l
= −2 z⊤nΣ

−1ΠX0 Gk GlΠ
′ pn (B.11)

It implies that:[
E(i)

]
k,l

= Ep(z|X0)

(
−z⊤nΣ

−1ΠX0 Gk GlΠ
′ pn

)
= −p⊤

n (Π′)
⊤

AGk Gl Π
′ pn (B.12)

B.2 Computation of F(i)

To derive an expression of Fi, we have to compute the

quantity
∂f (i)(δ1, δ2)

∂ (δ1)k ∂ (δ2)l
. We proceed in two steps:

• First, we derive the quantity
∂f (i)(δ1, δ2)

∂ (δ1)k
,
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• Then, the gathered expression is differentiated accord-
ing to (δ2)l and computed for δ1 = δ2 = 0.

We show, by classical classic derivation rules, that:

∂f (i)(δ1, δ2)

∂ (δ1)k
= f1(δ1, δ2) + f2(δ1, δ2) (B.13)

with:

f1(δ1, δ2) =
1

2
p⊤
nΠ

′⊤ Exp∧
G (δ2)

⊤ ∂Exp∧
G (δ1)

∂ (δ1)k

⊤

A×

Exp∧
G (δ1) Exp∧

G (δ2) Π′ pn (B.14)

f2(δ1, δ2) =
1

2
p⊤
nΠ

′⊤Exp∧
G (δ2)

⊤ Exp∧
G (δ1) A×

∂Exp∧
G (δ1)

∂ (δ1)k
Exp∧

G (δ2) Π′ pn (B.15)

Then, by deriving according to (δ2)l, we yield to:

∂f1(δ1, δ2)

∂ (δ2)l
= g1(δ1, δ2) + g2(δ1, δ2) (B.16)

∂f2(δ1, δ2)

∂ (δ2)l
= g3(δ1, δ2) + g4(δ1, δ2) (B.17)

with:

g1(δ1, δ2) =
1

2
p⊤
nΠ

′⊤ ∂Exp∧
G (δ2)

∂ (δ2)l

⊤
∂Exp∧

G (δ1)

∂ (δ1)k

⊤

A×

Exp∧
G (δ1) Exp∧

G (δ2) Π′ pn (B.18)

g2(δ1, δ2) =
1

2
p⊤
nΠ

′⊤Exp∧
G (δ2)

⊤ ∂Exp∧
G (δ1)

∂ (δ1)k

⊤

A

Exp∧
G (δ1)

∂Exp∧
G (δ2)

∂ (δ2)l
Π′ pn (B.19)

g3(δ1, δ2) =
1

2
p⊤
nΠ

′⊤ ∂Exp∧
G (δ2)

∂ (δ2)l

⊤

Exp∧
G (δ1) A×

∂Exp∧
G (δ1)

∂ (δ1)k
Exp∧

G (δ2) Π′ pn (B.20)

g4(δ1, δ2) =
1

2
p⊤
nΠ

′⊤ Exp∧
G (δ2)

⊤ Exp∧
G (δ1)

⊤ A×

∂Exp∧
G (δ1)

∂ (δ1)k

∂Exp∧
G (δ2)

∂ (δ2)l
Π′ pn (B.21)

Thus, we have :

∂2f (i)(δ1, δ2)

∂ (δ1)k ∂ (δ2)l

∣∣∣∣
δ1=0,δ2=0

= g1(δ1, δ2) + g2(δ1, δ2)+

g3(δ1, δ2) + g4(δ1, δ2)|δ1=0,δ2=0 (B.22)

The expression of F(i) is obtained by taking the expec-
tation of (B.22). Then :[

F(i)
]
k,l

= a1 + a2 + a3 + a4 (B.23)

with:

a1 =
1

2
p⊤
nΠ

′⊤G⊤
l G⊤

k AΠ′ pn (B.24)

a2 =
1

2
p⊤
nΠ

′⊤ G⊤
k AGl Π

′ pn (B.25)

a3 =
1

2
p⊤
nΠ

′⊤G⊤
l AGk Π

′ pn (B.26)

a4 =
1

2
p⊤
nΠ

′⊤ AGk Gl Π
′ pn (B.27)
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